解:因为$a - b = b - c=\frac {3}{5},$
所以$a - c=(a - b)+(b - c)=\frac {3}{5}+\frac {3}{5}=\frac {6}{5}。$
所以$(a - b)^2=\frac {9}{25},$$(b - c)^2=\frac {9}{25},$
$(a - c)^2=\frac {36}{25}。$
$ $即$a^2+b^2-2ab=\frac {9}{25},$$b^2+c^2-2bc=\frac {9}{25},$
$a^2+c^2-2ac=\frac {36}{25}。$
所以$a^2+b^2-2ab + b^2+c^2-2bc + a^2+c^2-2ac$
$=\frac {9}{25}+\frac {9}{25}+\frac {36}{25}=\frac {54}{25}。$
所以$2(a^2+b^2+c^2)-2(ab + bc + ac)=\frac {54}{25},$
所以$-2(ab + bc + ac)=\frac {54}{25}-2=\frac {4}{25}。$
$ $所以$ab + bc + ac=-\frac {2}{25}。$