解:
(1)$\because$二次函数$y=-x^{2}+mx + n$的图象经过点$A(-1,4),$$B(1,0),$$\therefore\begin{cases}-1 - m + n = 4,\\-1 + m + n = 0,\end{cases}$解得$\begin{cases}m=-2,\\n = 3.\end{cases}$$\therefore$二次函数的解析式为$y=-x^{2}-2x + 3$
(2)$\because$直线$y=-\frac{1}{2}x + b$经过点$B(1,0),$$\therefore-\frac{1}{2}\times1 + b = 0,$解得$b=\frac{1}{2}.$$\therefore y=-\frac{1}{2}x+\frac{1}{2}.$ 联立方程组,得$\begin{cases}y=-x^{2}-2x + 3,\\y=-\frac{1}{2}x+\frac{1}{2},\end{cases}$解得$\begin{cases}x_{1}=1,\\y_{1}=0,\end{cases}\begin{cases}x_{2}=-\frac{5}{2},\\y_{2}=\frac{7}{4}.\end{cases}$$\therefore$点$D$的坐标为$(-\frac{5}{2},\frac{7}{4}).$ 设点$M$的坐标为$(a,-\frac{1}{2}a+\frac{1}{2}),$则点$N$的坐标为$(a,-a^{2}-2a + 3),$且$-\frac{5}{2}\lt a\lt1.$$\therefore MN=-a^{2}-2a + 3-(-\frac{1}{2}a+\frac{1}{2})=-a^{2}-\frac{3}{2}a+\frac{5}{2}=-(a+\frac{3}{4})^{2}+\frac{49}{16}.$$\therefore$当$a=-\frac{3}{4}$时,线段$MN$的长取得最大值,为$\frac{49}{16}$