电子课本网 第43页

第43页

信息发布者:
0
$y=2x^{2}+4x + 1$

解:
(1)$\because$点$A$的坐标为$(-1,0),$点$B$的坐标为$(4,0),$$\therefore OA = 1,$$OB = 4.$$\therefore AB=OA + OB=1 + 4 = 5.$$\because OC = AB,$$\therefore OC = 5,$即点$C$的坐标为$(0,5)$
(2)设这个二次函数的解析式为$y=a(x - 4)(x + 1)(a\neq0).$$\because$点$C(0,5)$在该二次函数的图象上,$\therefore a(0 - 4)\times(0 + 1)=5,$解得$a=-\frac{5}{4}.$$\therefore y=-\frac{5}{4}(x - 4)(x + 1)=-\frac{5}{4}x^{2}+\frac{15}{4}x + 5$
解:
(1)当$b = 3$时,$c=-2 - b=-5.$$\therefore y=x^{2}+2x - 5=(x + 1)^{2}-6.$$\therefore$这条抛物线的顶点坐标是$(-1,-6)$
(2)由$P(-1,-2b),$点$A$在$y$轴上,$PA\perp y$轴,可得$PA = 1.$ 又$\because BP = 2PA,$$\therefore BP = 2.$$\because$点$B$在点$P$的左侧,$\therefore$点$B$的横坐标为$-3.$ 由抛物线的对称性,可知其对称轴为直线$x=-2.$$\therefore-\frac{b - 1}{2}=-2,$解得$b = 5.$ 又$\because b + c=-2,$$\therefore c=-7.$$\therefore$这条抛物线对应的函数解析式为$y=x^{2}+4x - 7$
解:
(1)$\because$二次函数$y=-x^{2}+mx + n$的图象经过点$A(-1,4),$$B(1,0),$$\therefore\begin{cases}-1 - m + n = 4,\\-1 + m + n = 0,\end{cases}$解得$\begin{cases}m=-2,\\n = 3.\end{cases}$$\therefore$二次函数的解析式为$y=-x^{2}-2x + 3$
(2)$\because$直线$y=-\frac{1}{2}x + b$经过点$B(1,0),$$\therefore-\frac{1}{2}\times1 + b = 0,$解得$b=\frac{1}{2}.$$\therefore y=-\frac{1}{2}x+\frac{1}{2}.$ 联立方程组,得$\begin{cases}y=-x^{2}-2x + 3,\\y=-\frac{1}{2}x+\frac{1}{2},\end{cases}$解得$\begin{cases}x_{1}=1,\\y_{1}=0,\end{cases}\begin{cases}x_{2}=-\frac{5}{2},\\y_{2}=\frac{7}{4}.\end{cases}$$\therefore$点$D$的坐标为$(-\frac{5}{2},\frac{7}{4}).$ 设点$M$的坐标为$(a,-\frac{1}{2}a+\frac{1}{2}),$则点$N$的坐标为$(a,-a^{2}-2a + 3),$且$-\frac{5}{2}\lt a\lt1.$$\therefore MN=-a^{2}-2a + 3-(-\frac{1}{2}a+\frac{1}{2})=-a^{2}-\frac{3}{2}a+\frac{5}{2}=-(a+\frac{3}{4})^{2}+\frac{49}{16}.$$\therefore$当$a=-\frac{3}{4}$时,线段$MN$的长取得最大值,为$\frac{49}{16}$