解:(1)由抛物线对应的函数解析式$y = ax^{2}+bx - 5$知,当$x = 0$时,$y = -5,$则$OB = 5。$
因为$5OA = OB = OC,$所以$OA = 1,$$OC = 5。$
所以点$A,$$C,$$B$的坐标分别为$(1,0),$$(-5,0),$$(0,-5)。$
设抛物线对应的函数解析式为$y = a(x - 1)(x + 5)=a(x^{2}+4x - 5)=ax^{2}+bx - 5,$
把$(0,-5)$代入$y = a(x - 1)(x + 5)$得$-5a = -5,$解得$a = 1。$
所以抛物线对应的函数解析式为$y = x^{2}+4x - 5。$
(2)因为抛物线$y = x^{2}+4x - 5=(x + 2)^{2}-9,$所以对称轴为直线$x = -2。$
点$A(1,0)$关于抛物线的对称轴直线$x = -2$对称的点为$C(-5,0),$则$BC$交抛物线的对称轴于点$M,$此时$\triangle ABM$的周长最小。
设直线$BC$的解析式为$y = kx + d,$把$B(0,-5),$$C(-5,0)$代入得$\begin{cases}d = -5\\-5k + d = 0\end{cases},$
将$d = -5$代入$-5k + d = 0$得$-5k - 5 = 0,$$-5k = 5,$解得$k = -1。$
所以直线$BC$对应的函数解析式为$y = -x - 5。$
当$x = -2$时,$y = -(-2)-5=-3,$所以点$M$的坐标为$(-2,-3)。$
(3)设$P(x,-x - 5),$因为$PQ$平行$y$轴交抛物线于点$Q,$所以$Q(x,x^{2}+4x - 5)。$
则$PQ = (-x - 5)-(x^{2}+4x - 5)=-x - 5 - x^{2}-4x + 5=-x^{2}-5x。$
因为$PQ// OB,$当$PQ = OB$时,四边形$OBQP$为平行四边形,即$-x^{2}-5x = 5,$
整理得$x^{2}+5x + 5 = 0,$根据求根公式$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$(其中$a = 1,$$b = 5,$$c = 5$),
$x=\frac{-5\pm\sqrt{5^{2}-4\times1\times5}}{2\times1}=\frac{-5\pm\sqrt{25 - 20}}{2}=\frac{-5\pm\sqrt{5}}{2}。$
当$x=\frac{-5 + \sqrt{5}}{2}$时,$-x - 5=-\frac{-5 + \sqrt{5}}{2}-5=\frac{5 - \sqrt{5}}{2}-5=\frac{5 - \sqrt{5}-10}{2}=\frac{-5 - \sqrt{5}}{2};$
当$x=\frac{-5 - \sqrt{5}}{2}$时,$-x - 5=-\frac{-5 - \sqrt{5}}{2}-5=\frac{5 + \sqrt{5}}{2}-5=\frac{5 + \sqrt{5}-10}{2}=\frac{-5 + \sqrt{5}}{2}。$
所以点$P$的坐标为$(\frac{-5 + \sqrt{5}}{2},\frac{-5 - \sqrt{5}}{2})$或$(\frac{-5 - \sqrt{5}}{2},\frac{-5 + \sqrt{5}}{2})。$