解:(1)设直线$l$对应的函数解析式为$y = mx + n(m\neq0)。$$\because$直线$l$与$x$轴交于点$A(6,0),$与$y$轴交于点$B(0,-6),$
$\therefore\begin{cases}6m + n = 0\\n = -6\end{cases},$解得$\begin{cases}m = 1\\n = -6\end{cases}。$$\therefore$直线$l$对应的函数解析式为$y = x - 6。$
(2)设抛物线对应的函数解析式为$y = a(x - h)^{2}+k(a\neq0)。$$\because$抛物线的对称轴是直线$x = 1,$$\therefore y = a(x - 1)^{2}+k。$
$\because$抛物线经过点$A,$$B,$$\therefore\begin{cases}25a + k = 0\\a + k = -6\end{cases},$两式相减得$24a = 6,$解得$a=\frac{1}{4},$把$a=\frac{1}{4}$代入$a + k = -6$得$\frac{1}{4}+k = -6,$$k =-\frac{25}{4}。$$\therefore$抛物线对应的函数解析式为$y=\frac{1}{4}(x - 1)^{2}-\frac{25}{4}。$
(3)$PM$长的最大值是$\frac{9\sqrt{2}}{8},$此时点$P$的坐标为$(3,-\frac{21}{4})。$