电子课本网 第63页

第63页

信息发布者:
解:(1)$\because$抛物线$y=x^{2}-4mx + 2m + 1$经过点$(4,3),$$\therefore16-16m + 2m + 1 = 3,$
$17-14m = 3,$$14m = 14,$解得$m = 1。$$\therefore y=x^{2}-4x + 3。$$\because y=x^{2}-4x + 3=(x - 2)^{2}-1,$$\therefore$此抛物线的顶点坐标为$(2,-1)。$
(2)$\because y=x^{2}-4mx + 2m + 1=(x - 2m)^{2}-4m^{2}+2m + 1,$$\therefore$抛物线开口向上,对称轴为直线$x = 2m。$
$\because$当$2m-3\leqslant x\leqslant2m + 1$时,$y$的最大值为$4,$$\therefore$当$x = 2m-3$时,$y = 4。$
$\therefore(2m-3-2m)^{2}-4m^{2}+2m + 1 = 4,$$9-4m^{2}+2m + 1 = 4,$$4m^{2}-2m - 6 = 0,$$2m^{2}-m - 3 = 0,$
因式分解得$(2m - 3)(m + 1)=0,$解得$m=\frac{3}{2}$或$m=-1。$
(3)$\because$抛物线$y=x^{2}-4mx + 2m + 1$与线段$OA$(不含端点)恰有一个交点,
$\therefore\begin{cases}2m + 1\gt0\\1-4m + 2m + 1\lt0\end{cases}$或$\begin{cases}2m + 1\lt0\\1-4m + 2m + 1\gt0\end{cases},$
解$\begin{cases}2m + 1\gt0\\1-4m + 2m + 1\lt0\end{cases},$由$2m + 1\gt0$得$m\gt-\frac{1}{2},$由$1-4m + 2m + 1\lt0$得$2-2m\lt0,$$m\gt1,$取交集得$m\gt1;$
解$\begin{cases}2m + 1\lt0\\1-4m + 2m + 1\gt0\end{cases},$由$2m + 1\lt0$得$m\lt-\frac{1}{2},$由$1-4m + 2m + 1\gt0$得$2-2m\gt0,$$m\lt1,$取交集得$m\lt-\frac{1}{2};$
$\therefore m\gt1$或$m\lt-\frac{1}{2}。$
解:(1)建立平面直角坐标系不唯一,如图①,$AB$为宽$16$米的水面,$C$为拱桥最高点,以$AB$的中点$O$为原点,$AB$所在直线为$x$轴,$OC$所在直线为$y$轴,建立平面直角坐标系。由题意,得$OA = OB=\frac{1}{2}AB = 8$米,$OC = 4$米,$\therefore C(0,4),$$B(8,0)。$$\therefore$设该抛物线对应的函数解析式为$y = ax^{2}+4,$将$B(8,0)$代入,得$a\cdot8^{2}+4 = 0,$$64a=-4,$解得$a =-\frac{1}{16}。$$\therefore$该抛物线对应的函数解析式为$y =-\frac{1}{16}x^{2}+4。$
(2)在$y =-\frac{1}{16}x^{2}+4$中,令$y = 2,$则$-\frac{1}{16}x^{2}+4 = 2,$$-\frac{1}{16}x^{2}=-2,$$x^{2}=32,$解得$x=\pm4\sqrt{2}。$$\therefore$此时水面的宽度为$4\sqrt{2}-(-4\sqrt{2})=8\sqrt{2}$(米)。
(3)如图②,这艘货船安全通过拱桥时,水面最多可以上升到点$O'$所在水平位置处,此时$EF$交$y$轴于点$G,$$\because$货船的高为$2.6$米,宽为$3.2$米,$\therefore GF=\frac{1}{2}\times3.2 = 1.6$(米),$O'G = 2.6$米。设$OO' = m$米,则$OG = OO'+O'G=(m + 2.6)$米。$\therefore$点$F$的坐标为$(1.6,m + 2.6)。$将$F(1.6,m + 2.6)$代入$y =-\frac{1}{16}x^{2}+4,$得$-\frac{1}{16}\times1.6^{2}+4 = m + 2.6,$$-0.16 + 4 = m + 2.6,$$3.84 = m + 2.6,$解得$m = 1.24。$$\therefore$为保证这艘货船可以安全通过拱桥,水面在正常水位(水面宽$16$米)的基础上最多能上升$1.2$米。
解:(1)由题意,得$\begin{cases}-\frac{b}{2a}=-1\\a + b + c = 0\\c = 3\end{cases},$将$c = 3$代入$a + b + c = 0$得$a + b=-3,$由$-\frac{b}{2a}=-1$得$b = 2a,$把$b = 2a$代入$a + b=-3$得$a + 2a=-3,$$3a=-3,$解得$a=-1,$$b=-2。$$\therefore$抛物线对应的函数解析式为$y=-x^{2}-2x + 3。$
(2)连接$MA,$$MB,$$MC。$$\because M$是抛物线的对称轴上一点,$\therefore MA = MB。$$\therefore MA + MC$的最小值即为$MB + MC$的最小值。$\therefore$直线$BC$与对称轴直线$x=-1$的交点即为$M。$
$\because$抛物线$y=-x^{2}-2x + 3$的对称轴为直线$x=-1,$$A(1,0),$$\therefore B(-3,0)。$设直线$BC$对应的函数解析式为$y = kx + b,$把$C(0,3),$$B(-3,0)$代入得$\begin{cases}b = 3\\-3k + b = 0\end{cases},$解得$\begin{cases}k = 1\\b = 3\end{cases}。$$\therefore$直线$BC$对应的函数解析式为$y = x + 3。$把$x=-1$代入$y = x + 3,$得$y = 2,$$\therefore M(-1,2)。$
由题意,得$OB = 3,$$OC = 3,$在$Rt\triangle BOC$中,$BC=\sqrt{OB^{2}+OC^{2}}=\sqrt{9 + 9}=3\sqrt{2}。$$\therefore$距离之和的最小值为$3\sqrt{2}。$
(3)$\because P(x_{1},n),$$Q(x_{2},n),$$\therefore PQ$与$x$轴平行。$\therefore$点$P,$$Q$关于对称轴直线$x=-1$对称。又$\because PQ = 2m,$$x_{1}\lt x_{2},$$\therefore x_{1}=-1-m,$$x_{2}=-1 + m。$
$\therefore x_{1}^{2}-mx_{2}-3m + 6=(-1-m)^{2}-m(-1 + m)-3m + 6=1 + 2m + m^{2}+m - m^{2}-3m + 6=7。$