(1)证明:由旋转性质,得$\triangle ADN\cong\triangle ABE,$所以$\angle DAN = \angle BAE,$$AN = AE。$
因为$\angle DAB = 90^{\circ},$$\angle MAN = 45^{\circ},$所以$\angle DAN+\angle BAM = 45^{\circ}。$
所以$\angle BAE+\angle BAM=\angle MAE = 45^{\circ}。$
所以$\angle MAE=\angle MAN。$
又因为$AE = AN,$$AM = AM,$所以$\triangle AEM\cong\triangle ANM。$
(2)解:设$CD = BC = x,$则$CM = x - 3,$$CN = x - 2。$
因为$\triangle AEM\cong\triangle ANM,$所以$EM = NM。$
因为$BE = DN,$所以$MN = EM=BM + BE=BM + DN = 5。$
因为易得$\angle C = 90^{\circ},$所以$MN^{2}=CM^{2}+CN^{2},$即$25=(x - 3)^{2}+(x - 2)^{2}。$
展开得$25=x^{2}-6x + 9+x^{2}-4x + 4,$
合并同类项得$2x^{2}-10x - 12 = 0,$化简为$x^{2}-5x - 6 = 0,$
因式分解得$(x - 6)(x + 1)=0,$解得$x_{1}=6,$$x_{2}=-1$(不合题意,舍去)。
所以正方形$ABCD$的边长为$6。$