(1) 解:连接$AC。$
因为$\angle BAC$和$\angle BDC$都是$\overset{\frown}{BC}$所对的圆周角,所以$\angle BAC = \angle BDC = 16^{\circ}。$
又因为$AB\perp CD,$$CE = EF,$所以$AC = AF,$则$\angle BAF = \angle BAC = 16^{\circ}。$
(2) 解:连接$BC,$$OA,$$OC。$
因为$AB\perp CD,$$EC = \sqrt{3}EB,$所以$\angle ABC = 60^{\circ},$那么$\angle AOC = 120^{\circ}。$
根据弧长公式$l=\frac{n\pi r}{180}$(其中$n$是圆心角度数,$r$是半径),可得$\overset{\frown}{AC}$的长为$\frac{120\pi\times5}{180}=\frac{10}{3}\pi。$