电子课本网 第140页

第140页

信息发布者:
(1) 证明:因为$\angle BAC = \angle ADB,$$\angle BAC = \angle CDB,$所以$\angle ADB = \angle CDB,$即$DB$平分$\angle ADC。$
因为$BD$平分$\angle ABC,$所以$\angle ABD = \angle CBD。$
又因为四边形$ABCD$是圆内接四边形,所以$\angle ABC + \angle ADC = 180^{\circ},$即$\angle ABD + \angle CBD + \angle ADB + \angle CDB = 180^{\circ},$$2(\angle ABD + \angle ADB) = 180^{\circ},$所以$\angle ABD + \angle ADB = 90^{\circ},$则$\angle BAD = 180^{\circ} - 90^{\circ} = 90^{\circ}。$
(2) 解:因为$\angle BAE + \angle DAE = 90^{\circ},$$\angle BAE = \angle ADE,$所以$\angle ADE + \angle DAE = 90^{\circ},$则$\angle AED = 90^{\circ}。$
因为$\angle BAD = 90^{\circ},$所以$BD$是圆的直径,$BD$垂直平分$AC,$所以$AD = CD。$
又因为$AC = AD,$所以$AC = AD = CD,$$\triangle ACD$是等边三角形,$\angle ADC = 60^{\circ},$则$\angle BDC = \frac{1}{2}\angle ADC = 30^{\circ}。$
因为$CF// AD,$所以$\angle F + \angle BAD = 180^{\circ},$$\angle F = 90^{\circ}。$
因为四边形$ABCD$是圆内接四边形,所以$\angle ADC + \angle ABC = 180^{\circ},$又因为$\angle FBC + \angle ABC = 180^{\circ},$所以$\angle FBC = \angle ADC = 60^{\circ},$则$\angle FCB = 30^{\circ},$$BC = 2BF = 4。$
因为$BD$是圆的直径,$\angle BCD = 90^{\circ},$$\angle BDC = 30^{\circ},$所以$BD = 2BC = 8,$此圆的半径是$4。$
(1) 证明:连接$OD。$
因为$OD = OA,$所以$\angle ODA = \angle A = 30^{\circ}。$
则$\angle DOB = \angle ODA + \angle A = 60^{\circ}。$
所以$\angle ODB = 180^{\circ} - \angle DOB - \angle B = 180^{\circ} - 60^{\circ} - 30^{\circ} = 90^{\circ},$即$OD\perp BD。$
又因为$OD$是$\odot O$的半径,所以$BD$是$\odot O$的切线。
(2) 解:因为$OD\perp BD,$$\angle B = 30^{\circ},$所以$OB = 2OD。$
又因为$AB = 3,$$OA = OD,$$AB = OA + OB = 3OD = 3,$所以$OD = 1,$$OB = 2。$
则$BD = \sqrt{OB^{2} - OD^{2}} = \sqrt{2^{2} - 1^{2}} = \sqrt{3}。$
所以涂色部分的面积$S = S_{\triangle BDO} - S_{扇形 DOC} = \frac{1}{2}\times1\times\sqrt{3} - \frac{60\pi\times1^{2}}{360} = \frac{\sqrt{3}}{2} - \frac{1}{6}\pi。$
解: (1) $\odot M$与$x$轴相切。
理由:连接$CM。$
因为$AC$平分$\angle OAM,$所以$\angle OAC = \angle CAM。$
又因为$AM = MC,$所以$\angle CAM = \angle ACM,$则$\angle OAC = \angle ACM,$所以$OA// MC。$
因为$OA\perp x$轴,所以$MC\perp x$轴。
又因为$CM$是$\odot M$的半径,所以$\odot M$与$x$轴相切。
(2) 过点$M$作$MN\perp y$轴于点$N,$则$AN = BN = \frac{1}{2}AB。$
因为$OA\perp x$轴,$MC\perp x$轴,$MN\perp y$轴,所以$\angle MCO = \angle AOC = \angle MNA = 90^{\circ},$四边形$MNOC$是矩形,$MN = OC,$$MC = ON = 5。$
设$AO = m,$则$MN = OC = 6 - m,$$AN = 5 - m。$
在$Rt\triangle ANM$中,由勾股定理$AM^{2}=AN^{2}+MN^{2},$可得$5^{2}=(5 - m)^{2}+(6 - m)^{2},$
即$25 = 25 - 10m + m^{2} + 36 - 12m + m^{2},$
$2m^{2}-22m + 36 = 0,$$m^{2}-11m + 18 = 0,$
$(m - 2)(m - 9) = 0,$解得$m_{1}=2,$$m_{2}=9$(不合题意,舍去)。
所以$AN = 3,$$AB = 6。$
(3) 连接$AD$交$CM$于点$E。$
因为$BD$是$\odot M$的直径,所以$\angle BAD = 90^{\circ},$$AD// x$轴,$AD\perp MC,$四边形$OAEC$为矩形,$AE = DE,$$AE = OC。$

(2)可得$MN = OC = 4,$$OA = 2,$所以点$C$的坐标为$(4,0),$$AD = 2AE = 2OC = 8,$点$D$的坐标为$(8,-2)。$
设直线$CD$对应的函数解析式为$y = kx + b,$则$\begin{cases}4k + b = 0\\8k + b = -2\end{cases},$
两式相减得:$4k=-2,$解得$k = -\frac{1}{2},$
把$k = -\frac{1}{2}$代入$4k + b = 0,$得$-2 + b = 0,$$b = 2。$
所以直线$CD$对应的函数解析式为$y = -\frac{1}{2}x + 2。$