解: (1) $\odot M$与$x$轴相切。
理由:连接$CM。$
因为$AC$平分$\angle OAM,$所以$\angle OAC = \angle CAM。$
又因为$AM = MC,$所以$\angle CAM = \angle ACM,$则$\angle OAC = \angle ACM,$所以$OA// MC。$
因为$OA\perp x$轴,所以$MC\perp x$轴。
又因为$CM$是$\odot M$的半径,所以$\odot M$与$x$轴相切。
(2) 过点$M$作$MN\perp y$轴于点$N,$则$AN = BN = \frac{1}{2}AB。$
因为$OA\perp x$轴,$MC\perp x$轴,$MN\perp y$轴,所以$\angle MCO = \angle AOC = \angle MNA = 90^{\circ},$四边形$MNOC$是矩形,$MN = OC,$$MC = ON = 5。$
设$AO = m,$则$MN = OC = 6 - m,$$AN = 5 - m。$
在$Rt\triangle ANM$中,由勾股定理$AM^{2}=AN^{2}+MN^{2},$可得$5^{2}=(5 - m)^{2}+(6 - m)^{2},$
即$25 = 25 - 10m + m^{2} + 36 - 12m + m^{2},$
$2m^{2}-22m + 36 = 0,$$m^{2}-11m + 18 = 0,$
$(m - 2)(m - 9) = 0,$解得$m_{1}=2,$$m_{2}=9$(不合题意,舍去)。
所以$AN = 3,$$AB = 6。$
(3) 连接$AD$交$CM$于点$E。$
因为$BD$是$\odot M$的直径,所以$\angle BAD = 90^{\circ},$$AD// x$轴,$AD\perp MC,$四边形$OAEC$为矩形,$AE = DE,$$AE = OC。$
由
(2)可得$MN = OC = 4,$$OA = 2,$所以点$C$的坐标为$(4,0),$$AD = 2AE = 2OC = 8,$点$D$的坐标为$(8,-2)。$
设直线$CD$对应的函数解析式为$y = kx + b,$则$\begin{cases}4k + b = 0\\8k + b = -2\end{cases},$
两式相减得:$4k=-2,$解得$k = -\frac{1}{2},$
把$k = -\frac{1}{2}$代入$4k + b = 0,$得$-2 + b = 0,$$b = 2。$
所以直线$CD$对应的函数解析式为$y = -\frac{1}{2}x + 2。$