解:$(2)△ABC∽△A'B'C' ,$理由:
如图,过点$D、$$D'$分别作$DE//BC,$$D'E'//B'C',$
$DE$交$AC$于点$E,$$D'E'$交$A'C'$于点$E'$
∵$DE//BC$
∴$△ADE∽△ABC$
∴$\frac {AD}{AB}=\frac {DE}{BC}=\frac {AE}{AC}$
同理可得,$\frac {A'D'}{A'B'}=\frac {D'E'}{B'C'}=\frac {A'E'}{A'C'}$
∵$\frac {AD}{AB}=\frac {A'D'}{A'B'} $
∴$\frac {DE}{BC}= \frac {D'E'}{B'C'} $
∴$\frac {DE}{D'E'} =\frac {BC}{B'C'} $
同理可得,$\frac {AE}{AC}= \frac {A'E'}{A'C'}$
∴$\frac {AC-AE}{AC}= \frac {A'C'-A'E'}{A'C},$即$ \frac {EC}{AC}=\frac {E'C'}{A'C'}$
∴$\frac {EC}{E'C'}=\frac {AC}{A'C'}$
∵$\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {BC}{B'C'}$
∴$\frac {CD}{C'D'}=\frac {DE}{D'E'}=\frac {EC}{E'C'}$
∴$ △DCE∽△D'C'E$
∴$∠CED=∠C'E'D'$
∵$DE//BC$
∴$∠CED+∠ACB=180°$
同理可得,$∠C'E'D'+∠A'C'B'=180°$
∴$∠ACB=∠A'C'B'$
∵$\frac {AC}{A'C'}=\frac {CB}{C'B'}$
∴$ △ABC∽△A'B'C'$