解:$(2)∵ \sqrt{9}<\sqrt{13}<\sqrt{16},$
$∴3<\sqrt{13}<4$
$∴ -4<-\sqrt{13}<-3$
$∴ 8<5+\sqrt{13}<9,$即$[5+\sqrt{13}]=8$
$1<5-\sqrt{13}<2,$
即$[5-\sqrt{13}]=1$
$∴ a=5+\sqrt{13}-8=\sqrt{13}-3,$
$b=5-\sqrt{13}-1=4-\sqrt{13}$
$∴a+b= \sqrt{13}-3+4-\sqrt{13}=1$