解$:(2)$仿照上述方法,可得
$2×4=\frac {1}{6}×(2×4×6-0×2×4),$
$4×6= \frac {1}{6}×(4×6×8-2×4×6),$
$6×8=\frac {1}{6}×(6×8×10-4×6×8),$
....
$100×102=\frac {1}{6}×(100×102×104-98×100×102),$
将上述式子相加,得
$2×4+4×6+6×8+…+100×102=\frac {1}{6}×100×102×104=176800.$
$(3)$解:仿照上述方法,可得
$1×2×3=\frac {1}{4}×(1×2×3×4-0×1×2×3),$
$2×3×4=\frac {1}{4}×(2×3×4×5-1×2×3×4),$
$3×4×5=\frac {1}{4}×(3×4×5×6-2×3×4×5).$
$n(n+1)(n+2)= \frac {1}{4}×[n(n+1)(n+2)(n+3)-(n-1)n·(n+1)(n+2)],$
将上述式子相加,得
$1×2×3+2×3×4+3×4×5+ …+n(n+1)(n+2)=\frac {1}{4}n(n+1)(n+2)(n+3).$