解$:(4)∵x=[x]+a,$其中$0≤a<1,$
$∴[x]=x-a,$
$∵4a=[x]+1,$
$∴a=\frac {[x]+1}{4}.$
$∵0≤a<1,$
$∴0≤\frac {[x]+1}{4}<1,$
$∴-1≤[x]<3,$
$∴[x]=-1,$$0,$$1,$$2.$
当$[x]=-1$时,$a=0,$$x=-1;$
当$[x]=0$时,$a=\frac {1}{4},$$x=\frac {1}{4};$
当$[x]=1$时,$a=\frac {1}{2},$$x=1\frac {1}{2};$
当$[x]=2$时,$a=\frac {3}{4},$$x=2\frac {3}{4};$
$∴x=-1$或$\frac {1}{4}$或$1\frac {1}{2}$或$2\frac {3}{4}.$