电子课本网 第115页

第115页

信息发布者:
解:​$(1)\sqrt {5+\frac {5}{24}}=\sqrt {\frac {125}{24}}=5\sqrt {\frac {5}{24}}$​
​$(2)$​猜想:​$\sqrt {n+\frac n{n^2-1}}=n\sqrt {\frac n{n^2-1}}(n$​为正整数)
证明:​$\sqrt {n+\frac n{n^2-1}}=\sqrt {\frac {n^3}{n^2-1}}=n\sqrt {\frac n{n^2-1}},$​等式成立
解:​$\sqrt 3-\sqrt 2<\sqrt 2-1,$​​$\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,$​​$\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3$​
猜想:​$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n$​是大于等于​$1$​的正整数)
证明:​$\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}$
​$\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}$​
∵​$\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}$​
∴​$\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}$​
∴​$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$​
解:当​$a_{1}=1$​时,​$a_{2}=\frac 1{1+1}=\frac 12,$​​$a_{3}=\frac 1{1+2}=\frac 13···a_n=\frac 1{n}$​
∴​$a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{4}+···+a_{1999}a_{2000}$​
​$=1×\frac 12+\frac 12×\frac 13+\frac 13×\frac 14+···+\frac {1}{1999}×\frac {1}{2000}$​
​$=1-\frac 12+\frac 12-\frac 13+\frac 13-\frac 14+···+\frac {1}{1999}-\frac {1}{2000}$​
​$=1-\frac {1}{2000}$​
​$=\frac {1999}{2000}$​