解:$\sqrt 3-\sqrt 2<\sqrt 2-1,$$\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,$$\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3$
猜想:$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n$是大于等于$1$的正整数)
证明:$\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}$
$\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}$
∵$\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}$
∴$\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}$
∴$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$