解:$(1) $由题意,得
$F(243)=(423+342+234)÷111=9,$$F(617)=(167+716+671)÷111=14$
$(2) $由题意,得$F(\mathrm {s})=(302+10x+230+x+100x+23)÷111=x+5,$
$F(\mathrm {t})=(510+y+100y+51+105+10y)÷111=y+6$
∴当$F(\mathrm {s})+F(\mathrm {t})=18$时,$x+5+y+6=18$
∴$x+y=7$
∵$s,$$t $都是“相异数”
∴$x≠2,$$x≠3$且$y≠1,$$y≠5$
∵$1≤x≤9,$$1≤y≤9,$且$x,$$ y $都是正整数
∴$\{\begin{array}{l}x=1\\y=6\end{array} $或$ \{\begin{array}{l}x=4\\y=3\end{array} $或$ \{\begin{array}{l}x=5\\y=2\end{array} $
∵$k=\frac {F(\mathrm {s})}{F(\mathrm {t})}$
∴分类讨论如下:
①当$ \{\begin{array}{l}x=1\\y=6\end{array} $时,$ F(\mathrm {s})=6,$$ F(\mathrm {t})=12$
∴$k=\frac {1}{2}$
②当$ \{\begin{array}{l}x=4\\y=3\end{array} $时,$ F(\mathrm {s})=9,$$ F(\mathrm {t})=9$
∴$k=1$
③当$ \{\begin{array}{l}x=5\\y=2\end{array} $时,$ F(\mathrm {s})=10,$$ F(\mathrm {t})=8$
∴$k= \frac {5}{4}$
∵$\frac {1}{2}<1<\frac {5}{4}$
∴$k $的最大值为$ \frac {5}{4}$