解:$(1) $由题意,得$∠1-∠2=30°$且$∠1+∠2=180°$
∴$∠1=105°$
$(2)②$设$∠ABC=y°$
∵$∠ACB=90°$
∴$∠BAC=90°-∠ABC=(90-y)°$
∵$AE$是$△ABC$的角平分线
∴$∠BAE= \frac {1}{2} ∠BAC=(45- \frac {1}{2}y )°$
∴$∠CEF=∠BAE+∠ABC=(45+ \frac {1}{2}y )°$
∵$CD⊥AB$
∴$∠BDC=90°$
∴$∠FCE=90°-∠ABC=(90-y)°$
∵$∠FCE$与$∠CEF $互为“伙伴角”
∴分类讨论如下:
若$∠FCE-∠CEF=30°$则$90-y-(45+ \frac {1}{2}y )=30,$解得$y=10$
∴$∠ABC=10°$
若$∠CEF-∠FCE=30°$则$45+\frac {1}{2}y-(90-y)=30,$解得$y=50$
∴$∠ABC=50°$
综上所述,$∠ABC$的度数为$10°$或$50°$