解:$(2)$∵$BP,$$CP $分别是$∠ABC$的“邻$AB$三分线”和$∠ACB$的“邻$AC$三分线”
∴$∠PBC=\frac {2}{3} ∠ABC,∠PCB= \frac {2}{3} ∠ACB$
∴$∠PBC+∠PCB= \frac {2}{3} (∠ABC+∠ACB)$
∵$BP⊥CP$
∴$∠BPC=90°$
∴$∠PBC+∠PCB=90°$
∴$∠ABC+∠ACB=135°$
∴$∠A=180°-(∠ABC+∠ACB)=45°$
$(3)$设$AC$与$DP $交于点$E$
∵$∠A+∠ADB+∠AOD=180°,$$∠B+∠ACB+∠BOC=180°,$$∠AOD=∠BOC$
∴$∠A+∠ADB=∠B+∠ACB$
∵$∠A=66°,$$∠B=45°,$$∠ADB=m°$
∴$∠ACB=∠A+∠ADB-∠B=(m+21)^2.$
同理可得$∠DPC=∠A+∠ADP-∠ACP$
∵$∠ADB$的“三分线”所在的直线与$∠ACB$的“三分线”所在的直线交于点$P$
∴分类讨论如下:
①如图①,若$DP,$$CP $分别是$∠ADB$的“邻$AD$三分线”和$∠ACB$的“邻$BC$三分线”,则
$∠ADP= \frac {1}{3} ∠ADB= ( \frac {1}{3}\ \mathrm {m})°$
$∠ACP=\frac {2}{3} ∠ACB=( \frac {2}{3}m+14)°$
∴$∠DPC=(52-\frac {1}{3}m)°$
②如图②,若$DP,$$CP $分别是$∠ADB$的“邻$AD$三分线”和$∠ACB$的“邻$AC$三分线”,则
$∠ADP =\frac {1}{3} ∠ADB= ( \frac {1}{3}m)°$
$∠ACP =\frac {1}{3} ∠ACB=( \frac {1}{3}m+7)°$
∴$∠DPC=59°$
③如图③,若$DP,$$CP $分别是$∠ADB$的“邻$BD$三分线”和$∠ACB$的“邻$BC$三分线”,则
$∠ADP=\frac {2}{3} ∠ADB= ( \frac {2}{3}m)°$
$∠ACP= \frac {2}{3} ∠ACB=( \frac {2}{3}m+14)°$
∴$∠DPC=52°$
④ 如图④,若$DP,$$CP $分别是$∠ADB$的“邻$BD$三分线”和$∠ACB$的“邻$AC$$三分线”,则
$∠ADP=\frac {2}{3} ∠ADB= ( \frac {2}{3}m)°$
$∠ACP = \frac {1}{3} ∠ACB=( \frac {1}{3}m+7)°$
∴$∠DPC= (\frac {1}{3}m+59)°$
综上所述,$∠DPC$的度数为$(52- \frac {1}{3}m)°$或$59°$或$52°$或$( \frac {1}{3}m+59)°$