首 页
电子课本网
›
第101页
第101页
信息发布者:
$={\frac {1×{\sqrt {2}}} {\sqrt {2}×{\sqrt {2}}}}$
$={\frac {\sqrt {2}} {2}}$
$={\frac {1×{\sqrt {3}}} {\sqrt {3}×{\sqrt {3}}}}$
$={\frac {\sqrt {3}} {3}}$
$={\frac {\sqrt {2}×{\sqrt {5}}} {\sqrt {5}×{\sqrt {5}}}}$
$={\frac {\sqrt {10}} {5}}$
$={\frac {\sqrt {5}×{\sqrt {6}}} {\sqrt {6}×{\sqrt {6}}}}$
$={\frac {\sqrt {30}} {6}}$
$={\frac {\sqrt {3}×{\sqrt {2}}} {2{\sqrt {2}}×{\sqrt {2}}}}$
$={\frac {\sqrt {6}} {4}}$
$={\frac {1×{\sqrt {3}}} {2{\sqrt {3}}×{\sqrt {3}}}}$
$={\frac {\sqrt {3}} {6}}$
$={\frac {\sqrt {7}×{\sqrt {2}}} {3{\sqrt {2}×{\sqrt {2}}}}}$
$={\frac {\sqrt {14}} {6}}$
$={\frac {\sqrt {5}×{\sqrt {3}}} {3{\sqrt {3}×{\sqrt {3}}}}}$
$={\frac {\sqrt {15}} {9}}$
$={\frac {{\sqrt {y}×}\sqrt {2x}} {\sqrt {2x}×{\sqrt {2x}}}}$
$={\frac {\sqrt {2xy}} {2x}}$
$解: {\sqrt {2}},{\frac {\sqrt {2}} {3}},-2{\sqrt {2}}是同类二次根式,{\frac {\sqrt {3}} {2}},{\frac {\sqrt {3}} {5}},3{\sqrt {3}}是同类二次根式$
$解:{\sqrt {6},{\sqrt {24}}}是同类二次根式,{\sqrt {18},{\sqrt {32}}}是同类二次根式$
上一页
下一页