电子课本网 第75页

第75页

信息发布者:
解:因为​$\frac {1}{x}-\frac {1}{y}=3$​
​$ \frac {1}{x}-\frac {1}{y}=\frac {y-x}{xy}=3$​
所以​$y-x=3xy$​
原式​$=\frac {x-(y-x)-y}{2x+y-x-2y}$​
​$ =\frac {2(x-y)}{x-y}$​
​$ =2$​


D
A
解:原式​$=\frac {a-b}{a-b}×\frac {ab}{a-b}$​
​$ =\frac {ab}{a-b}$​
解:原式​$=\frac {x(x+2)-x(x-2)}{(x-2)(x+2)}×\frac {2-x}{4x}$​
​$ =\frac {4x}{(x+2)(x-2)}×\frac {2-x}{4x}$​
​$ =-\frac {1}{x+2}$​
解:原式​$=1-\frac {a-b}{a+2b}×\frac {(a+2b)²}{(a-b)(a+b)}$​
​$ =1-\frac {a+2b}{a+b}$​
​$ =-\frac {b}{a+b}$​
解:原式​$=\frac {a²-b²+2b²}{a-b}$​
​$ =\frac {a²+b²}{a-b}$​
解:原式​$=\frac {(x-y)²+4xy}{x-y}×\frac {(x+y)²-4xy}{x+y}$​
​$ =\frac {(x+y)²}{x-y}×\frac {(x-y)²}{x+y}$​
​$ =(x+y)(x-y)$​
​$ =x²-y²$

解:原式​$=\frac {m+2-(m-2)}{(m+2)(m-2)}$​
​$+\frac {2(m-1)-2(m+1)}{(m+1)(m-1)}$​
​$ =\frac {4}{(m+2)(m-2)}-\frac {4}{(m+1)(m-1)}$​
​$ =\frac {12}{(m+2)(m-2)(m+1)(m-1)}$​