解:因为$\frac {xy}{x+y}=-2$
所以$\frac {x+y}{xy}=\frac {1}{x}+\frac {1}{y}=-\frac {1}{2}$
同理可得:$\frac {1}{y}+\frac {1}{z}=\frac {3}{4},$$\frac {1}{x}+\frac {1}{z}=-\frac {3}{4}$
所以$\frac {1}{x}+\frac {1}{y}+\frac {1}{z}=(-\frac {1}{2}+\frac {3}{4}-\frac {3}{4})÷2=-\frac {1}{4}$
所以原式$=\frac {1}{\frac {1}{x}+\frac {1}{y}+\frac {1}{z}}=-4$