$解:\frac{360°-∠C}{EP_{2023}G}=2²⁰²³.理由如下:\ $
$设∠C=α.通过前面的证明易得∠CED+∠CGF=360°-∠C=360°-α.\ $
$∵∠CED 与∠CGF 的平分线相交于点 P_{1},∠P_{1}ED与∠P_{1}GF 的平分线相交于点 P_{2},$
$∠P_{2}ED与∠P_{2}GF的平分线相交于点P_{3},···,\ $
$∴∠EP_{1}G=\frac{1}{2}(∠CED+∠CGF)=\frac{1}{2¹}(∠CED+∠CGF)=\frac{1}{2¹}(360°-α),\ $
$∠EP_{2}G=\frac{1}{4}(∠CED+∠CGF)=\frac{1}{2²}(∠CED+∠CGF)=\frac{1}{2²}(360°-α),\ $
$∠EP_{3}G=\frac{1}{8}(∠CED+∠CGF)=\frac{1}{2³}(∠CED+∠CGF)=\frac{1}{2³}(360°-α),$
$∠EP_{4}G=\frac{1}{16}(∠CED+∠CGF)=\frac{1}{2^4}(∠CED+∠CGF)=\frac{1}{2^4}(360°-α),···,\ $
$∴∠EP_nG=\frac{1}{2ⁿ}(360°-α).\ $
$当n=2023时,∠EP_{2023}G=\frac{1}{2²⁰²³}(360°-α).$
$∴\frac{360°-∠C}{EP_{2023}G}=\frac{360°-α}{\frac{1}{2²⁰²³}(360°-α)}=2²⁰²³.\ $