$解:设一次函数\ y=k x+b\ 的图象与\ x\ 轴交点的坐标为\ (a, 0) ,$
$又其交点的纵坐标是 -2 ,$
$\therefore \frac{1}{2} \times|a| \times|-2|=1,\ $
$\therefore|a|=1,\ $
$\therefore a= \pm 1,$
$即图象与\ x\ 轴交点的坐标为\ (1,0)\ 或\ (-1,0)\ 。$
$(1)当图象与坐标轴的交点是\ (1,0)\ 和\ (0,-2) 时,$
$\left\{\begin{array} { l } { k + b = 0 } \\{ b = - 2 }\end{array} \text { , 解得: } \left\{\begin{array}{l}k=2 \\b=-2\end{array},\right.\right.\ $
$\therefore y=2 x-2 ;$
$(2) 当图象与坐标轴的交点是\ (-1,0)\ 和\ (0,-2)\ 时,$
$\left\{\begin{array} { l } { - k + b = 0 } \\{ b = - 2 }\end{array} \text { ,解得: } \left\{\begin{array}{l}k=-2 \\b=-2\end{array},\right.\right.\ $
$\therefore y=-2 x-2 .$
$故答案为:\ y=2 x-2 , 或\ y=-2 x-2 .$
$ $
$ $