$证明:(1)延长BD交AC于点H,\ $
$在△ADB和△ADH中,\ $
$\begin{cases}{\ ∠BAD=∠HAD, }\ \\ {\ AD=AD,\ }\\{ ∠ADB=∠ADH,\ } \end{cases}\ $
$∴△ADB≌△ADH(ASA),$
$∴BD=HD,又E为BC的中点,\ $
$∴DE//AC.$
$解:(2)∵△ADB≌△ADH,∴AH=AB=4,$
$∴CH=AC-AH=2.\ $
$∵BD=HD,又E为BC的中点,\ $
$∴DE=\frac{1}{2}CH=1.$