$解:(2)∵△ACE≌△FCB,∴S_{△ACE} =S_{△BCF} .\ $
$又BC=CE,∴S_{△ABC} =S_{△ACE} .\ $
$同理S_{△CEF} =S_{△BCF} .\ $
$∴S_{△CEF} =S_{△BCF} =S_{△ACE} =S_{△ABC} =3cm².\ $
$∴S_{四边形ABFE} =3×4=12(cm²).$
$(3)当∠ACB=60°时,四边形ABFE为矩形.理由如下:$
$ ∵BC=CE,AC=CF,$
$ ∴四边形ABFE为平行四边形.$
$ 当∠ACB=60°时,∵AB=AC,$
$ ∴△ABC为等边三角形$
$ ∴BC=AC.∴AF=BE.∴四边形ABFE为矩形.$
$ 即当∠ACB=60°时,四边形ABFE为矩形.$