证明:$(1)∵$正五边形$ABCDE,$
$∴AB=BC,$$∠ABM=∠C,$
∴在$△ABM$和$△BCN$中
$\begin{cases}{AB=BC}\\{∠ABM=∠C}\\{BM=CN}\end{cases}$
$∴△ABM≌△BCN(\mathrm {SAS}).$
(2)解:∵△ABM≌△BCN,
$∴∠BAM=∠CBN,$
$∵∠BAM+∠ABP=∠APN,$
$∴∠CBN+∠ABP=∠APN=∠ABC=\frac {(5-2)×180°}{5}=108°.$
即$∠APN$的度数为$108°.$