证明:$(1)$连接$OC. $
$∵\widehat{BC}=\widehat{BD},$
$∴ ∠BOD=∠BOC.$
$∵ OA=OC,$
$∴ ∠OCA=∠A,$
$∴ ∠BOC=∠OCA+∠A=2∠A. $
$∵ ∠BOD=2∠F,$
$∴ ∠A=∠F. $
$∵ △AEG、$$△FBG$的内角和均为$180°,$$∠AGE=∠BGF,$
$∴∠AEG=∠GBF.$
$∵DE⊥AC,$
$∴ ∠AEG=90°,$
$∴ ∠GBF=90°,$
$∴ OB⊥BF.$
$∵ OB$为$⊙O$的半径,
$∴ BF$是$⊙O$的切线.
$(2)△DGB$为等腰三角形,理由:
$∵ AB$是$⊙O$的直径,$\widehat{BC}=\widehat{BD},$
$∴\widehat{AC}=\widehat{AD},$
$∴ ∠OBD=∠OBC. $
$∵ AB$是$⊙O$的直径,
$∴ ∠ACB=90°$
由$(1),$得$∠AEG=90°,$
$∴ ∠ACB=∠AEG,$
$∴ EF//BC,$
$∴ ∠DGB=∠OBC,$
$∴ ∠DGB=∠OBD,$
$∴ DB=DG,$
$∴ △DBG$为等腰三角形
$(3)$由$(1),$得$∠GBF=90°,$
由$(2),$得$∠DGB =∠OBD,$
$∴∠DGB +∠F = 90°,$$ ∠OBD+∠FBD=90°,$
$∴∠F=∠FBD,$
$∴ BD=DF.$
由$(2),$得$BD=DG.$
$∵BD=2,$
$∴ FG=DF+DG=2BD=4$