证明:$(1)∵D$是$\widehat{AC}$的中点
$∴\widehat{AD}=\widehat{CD}$
$∵AB⊥DH$且$AB$是$⊙O$的直径
$∴\widehat{AD}=\widehat{AH}$
$∴\widehat{CD}=\widehat{AH}$
$∴∠ADH=∠CAD$
$∴AF=DF$
$(2)$设$AE=\sqrt{5}x,$则$AD=5x$
$∵ DE⊥AB,$
$∴∠AED=90°,$
∴在$Rt△AED$中,$DE= \sqrt{AD²-AE²}=2\sqrt{5}x.$
$∵AF=\frac {5}{2},$$AF=DF,$
$∴ DF=\frac {5}{2}.$
∵在$Rt△AEF $中,$AE²+EF²=AF²,$
$∴(\sqrt{5}x)²+(2\sqrt{5}x-\frac {5}{2})²=(\frac {5}{2})²,$
解得$x=\frac {2\sqrt{5}}{5}(x=0$舍去),
$∴AE=\sqrt{5}x=2$