解:$(1) ∵ $在$△ABC$中,$∠CAB=90°,$$AD$是边$BC$上的高,
$∴ S_{△ABC}= \frac {1}{2}×AB×AC= \frac {1}{2}×BC×AD. $
$∵ AB=6\ \mathrm {cm},$$AC=8\ \mathrm {cm},$$BC=10\ \mathrm {cm},$
$∴ AD=4.8\ \mathrm {cm} $
$(2) ∵ AE$是$△ABC$的中线,
$∴ BE= \frac {1}{2}\ \mathrm {BC}. $
$∴ S_{△ABE}= \frac {1}{2}×BE×AD= \frac {1}{2} × \frac {1}{2}×BC×AD= \frac {1}{4} ×BC×AD= \frac {1}{4} ×10×4.8=12(\ \mathrm {cm}²)$
$(3)∵AE$是$△ABC$的中线,
$∴BE=CE.$
将$△ACE$和$△ABE$的周长分别记为$C△ACE$和$C△A BE,$
则$C△A CE-C△ABE=AC+CE+AE-(AB+BE+AE)=AC-AB=8-6=2(\ \mathrm {cm})$