电子课本网 第19页

第19页

信息发布者:
A
B
126°
82°
360°
​$ 180°-2a $​
解​$:(1)② ∵ EF⊥BC,$​
​$∴ ∠EFC=90°.$​
​$∴∠C+∠CEF=90°.$​
​$∵ ∠A=90°,$​
​$∴∠C+∠ABC=90°.$​
​$∴∠CEF=∠ABC.$​
​$∵∠AEF=180°-2a,$​
​$∴ ∠CEF=2a.$​
​$∴∠ABC=2a.$​
​$∵ BD$​是​$△ABC$​的角平分线,
​$∴∠ABD=\frac {1}{2}∠ABC=α $​
​$∴∠ABD=∠M. $​
​$∴ BD//ME$​
​$(2)∠A+2∠N=90° $​
​$∵ BD $​平分​$∠ABC,$​​$EG $​平分​$∠AEF,$​
∴ 设​$∠ABD=∠DBC=x,∠AEG=∠FEG=y。$​
​$∴∠ABC=2x,∠AEF=2y. $​
​$∵∠ABD+∠A=180°-∠ADB,∠ADB=∠N+∠AEG,$​
​$∴x+∠A=180°-∠N-y.$​
​$∴x+y=180°-∠A-∠N①. $​
在​$Rt△FEG $​中​$,∠EGF=∠BGN=90°-y.$​
​$∵∠DBG=∠N+∠BGN,$​
​$∴x=∠N+90°-y∴x+y=∠N+90°②. $​
由①②,得​$ 180°-∠A-∠N=∠N+90°,$​
​$∴∠A+2∠N=90°$​