解:$(1)∵∠BAD=100°,$
$∴∠DAF=180°-∠BAD=80°,$
$∵EF⊥AB,$
$∴∠AFE=90°,$
$∴∠EAE+∠AEF=90°,$
$∴∠EAF=90°-∠AEF=90°-50°=40°,$
$∴∠CAD=∠DAF-∠EAF=80°-40°=40°.$
$(2)$证明:如图所示,过点$E$作$EN⊥AD$于点$N,$$EM⊥CD$于点$M,$

$∵∠ABC$的平分线交$AC$于点$E,$$EM⊥CD,$$EF⊥AB,$
$∴EM=EF,$
由$(1)$可得,$∠CAD=∠CAF=40°,$
$∴CA$平分$∠DAF,$
又$∵EN⊥AD,$$EF⊥AF,$
$∴EF=EN,$
$∴EM=EN,$
$∵EN⊥AD,$$EM⊥CD,$
$∴DE$平分$∠ADC.$
$(3)$解:由$(2)$可知,$EF=EN=EM,$
$∵S_{△ADE}+S_{△CDE}=S_{△ACD},$
$∴\frac {1}{2}•AD•EN+\frac {1}{2}•CD•EM=15,$即$2EF+4EF=15,$
$∴EF=\frac {5}{2},$
$∴S_{△ABE}=\frac {1}{2}•AB•EF=\frac {35}{4}.$