$解: ∵\frac {a b}{a+b}=\frac {1}{3},$
$ ∴a,b均不为 0, 且 \frac {a+b}{a b}=3 . $
$∴\frac {a}{a b}+\frac {b}{a b}= 3,即 \frac {1}{b}+\frac {1}{a}=3①.$
$同理可得 \frac {1}{c}+\frac {1}{b}=4②,\frac {1}{a}+\frac {1}{c}=5③. $
$由①+②+③,得 2(\frac {1}{a}+\frac {1}{b}+\frac {1}{c})=12$
$∴\frac {1}{a}+\frac {1}{b}+\frac {1}{c}=6,即 \frac {a b+b c+a c}{a b c}=6$
$ ∴\frac {a b c}{a b+b c+a c}=\frac {1}{6}$