解:$(1)$在$△ABD$和$△ACE$中,
$\begin{cases}{AB=AC, }\\{BD=CE,}\\{AD=AE }\end{cases}$
$∴ △ABD≌△ACE. $
$∴ ∠BAD=∠CAE. $
$∴ ∠BAD+∠DAC=∠DAC+∠CAE,$
即$∠BAC=∠DAE=42°,$
$∵ AD=AE,$
$∴ ∠ADE=\frac {1}{2} ×(180°-42°)=69°$
$(2)∵∠BAC=∠DAE,$
∴ 易得$∠BAD=∠CAE.$
在$△ABD$和$△ACE$中,
$\begin{cases}{AB=AC}\\{∠BAD=∠CAE,}\\{AD=AE,}\end{cases}$
$∴△ABD≌△ACE.$
$∴ BD=CE.$
$∵ AD=AE,$$AC⊥DE,$
$∴AC$垂直平分$DE.$
$∴CD=CE.$
$∴BD=CD.$
$∴BC=BD+CD=2BD.$
$∴\frac {BD}{BC}=\frac {1}{2}$