证明:$ (1)∵m≠n,$
$∴m-n≠0,$
$∵\ \mathrm {m^2}=n+2,$$n^2=m+2,$
$∴\ \mathrm {m^2}-n^2=n-m,$则$(m+n)(m-n)=-(n-m).$
则$m+n=-1.$
$(2)$由已知两式相加,得$\ \mathrm {m^2}+n^2=m+n+4,$
即$(m+n)^2-2mn=m+n+4,$
将$m+n=-1$代入,得
$1-2mn=-1+4,$
$mn=-1.$
$\frac {1}{m}+\frac {1}{n}=\frac {m+n}{mn}=1.$