解$:(2)$设$\frac {a-b}{2a+3b}$的关联分式是$N,$则:
$\frac {a-b}{2a+3b}-N=\frac {a-b}{2a+3b}·N.$
$∴(\frac {a-b}{2a+3b}+1)·N=\frac {a-b}{2a+3b}.$
$∴\frac {3a+2b}{2a+3b}·N=\frac {a-b}{2a+3b}.$
$∴N=\frac {a-b}{3a+2b}.$
$(3)②$由题意得:$\{\begin{array}{l}{4m+2=4n-2}\\{mx+m=mx+n+4m+2}\end{array}.$
$∴\{\begin{array}{l}{n-m=1}\\{n+3m=-2}\end{array}.$
$∴m=-\frac {3}{4},$$n=\frac {1}{4}$