解:$(1)$因为并联电路中各支路两端的电压相等,根据欧姆定律的变形式可得,$R_{2}$的阻值$R_{2}=\frac {U}{I_{2}}=\frac {6\ \mathrm {V}}{0.5\ \mathrm {A}}=12\ \mathrm {Ω}$,因为并联电路中干路电流等于各支路电流之和,所以通过滑动变阻器$R_{1}$的电流$I_{1}=I-I_{2}=1.5\ \mathrm {A}-0.5\ \mathrm {A}=1\ \mathrm {A}$,滑动变阻器$R_{1}$接入电路的电阻$R_{1}=\frac {U}{I_{1}}=\frac {6\ \mathrm {V}}{1\ \mathrm {A}}=6\ \mathrm {Ω} $
$(2)$因为并联电路中各支路独立工作、互不影响,所以移动滑片时,通过$R_{2}$的电流不变,即$I_{2}=0.5\ \mathrm {A}$,当电流表$A_{1}$的示数为$3\ \mathrm {A}$时,滑动变阻器接入电路的电阻最小,此时通过滑动变阻器$R_{1}$的电流$I_{1\ \mathrm {max}}=I_{\mathrm {max}}-I_{2}=3\ \mathrm {A}-0.5\ \mathrm {A}=2.5\ \mathrm {A}$,滑动变阻器接入电路的电阻最小值$ R_{1\mathrm {\mathrm {min}}} =\frac {U}{I_{1\ \mathrm {max}}}=\frac {6\ \mathrm {V}}{2.5\ \mathrm {A}}=2.4\ \mathrm {Ω}$