$证明:∵ AD平分∠BAC,$
$∴ ∠CAD=∠EAD.\ $
$∵ DE⊥AB,\ $
$∴∠AED=90°.\ $
$∵ ∠ACB=90°,$
$∴ ∠ACD=∠AED.\ $
$在△ACD和△AED中,$
$\begin{cases}{∠ACD=∠AED,}\\{\ ∠CAD=∠EAD,}\\{AD=AD,}\end{cases}$
$∴△ACD≌△AED (\mathrm {AAS}),$
$∴AC=AE,CD=ED,$
$∴点A、D都在线段CE的垂直平分线上,$
$∴AD垂直平分线段CE$