$解:(3)AB+AD=2AE,理由如下:$
$过点C作CF⊥AD于F,则 ∠CFA=∠CFD=90°$
$∵CE⊥AB$
$∴∠CEA=90°$
$∴∠CFA=∠CEA$
$∵AC平分∠BAD$
$∴∠CAE= ∠CAF$
$在△CAE 和△CAF 中$
$\begin{cases}{∠CEA=∠CFA}\\{∠CAE=∠CAF}\\{AC=AC}\end{cases}$
$∴△CAE ≌△CAF(\mathrm {AAS})$
$∴AE=AF,CE=CF$
$∵∠ABC+∠D=180°,∠ABC+∠CBE=180°$
$∴∠CBE=∠D$
$在△CDF 和△CBE中$
$\begin{cases}{∠D=∠CBE}\\{∠CFD=∠CEB}\\{CF=CE}\end{cases}$
$∴△CDF≌△CBE(\mathrm {AAS})$
$∴DF=BE$
$∵AB+BE=AE,AD-DF=AF$
$∴AB+BE+AD-DF=AE+AF$
$∴AB+AD=2AE$