$解:(1)作CM⊥BD于点M,CN⊥AD$
$交AD的延长线于点N$
$∵△ABC是等边三角形$
$∴ AC =BC, ∠BCA = ∠ADB = 60°$
$∵∠BGC=∠AGD$
$∴ ∠CBM= ∠CAD$
$在△BCM 和△ACN 中$
$\begin{cases}{∠BMC=∠ANC}\\{∠CBM=∠CAN}\\{BC=AC}\end{cases}$
$∴△BCM≌△ACN(\mathrm {AAS})$
$∴CM=CN$
$又∵CM⊥BD,CN⊥AD$
$∴ ∠MDC=∠NDC=60°$
$∴ ∠ADB=∠ADF=60°$
$∴DA平分∠BDF$
$\ (2)设∠ABD=α,则∠ACD=2α$
$∴ ∠BCD=60°+2α$
$∴∠BDC= 60°-α=∠DBC$
$∴BC=DC$
$∴∠F=60°-α-α=60°-2α$
$∵FH=FC$
$\ ∴∠FHC=∠FCH=60°+α$
$∴∠HCB=∠BCD-∠FCH=α$
$∴∠HCB=∠ABD$
$在△ABG和△BCH中$
$\begin{cases}{∠BAG=∠CBH}\\{∠ABC=∠BCH}\\{AB=BC}\end{cases}$
$∴△ABG≌△BCH(\mathrm {AAS})$
$∴BH=AG$
$\ (3)(更多请点击查看作业精灵详解)$