$解:(3)存在满足条件的P、Q$
$∵OM⊥AB,$
$AB= \sqrt{OB²+OA²}= \sqrt{3²+4²}= 5\ $
$∴∠OMP=90°,$
$OM=\frac{OA\ \cdot\ OB}{AB}=\frac{12}{5}$
$∴以O、P、Q 为顶点的三角形与△OMP\ $
$全等时,∠OQP=90°$
$①△OMP≌△PQO$
$∴PQ=OM=\frac{12}{5}$
$即点P 的横坐标为-\frac{12}{5}或\frac{12}{5}$
$如图所示$
$\ -\frac{3}{4}×(-\frac{12}{5})+3=\frac{24}{5},$
$-\frac{3}{4}×\frac{12}{5}+3=\frac{6}{5}$
$∴点P 的坐标为(-\frac{12}{5},\frac{24}{5})或(\frac{12}{5},\frac{6}{5})$
$\ ②△OMP≌△QQP$
$∴QQ=OM=\frac{12}{5}$
$即点P、点Q 的纵坐标为-\frac{12}{5}或\frac{12}{5}$
$如图所示$
$\ -\frac{3}{4}x+3=-\frac{12}{5}$
$解得x=\frac{36}{5}$
$-\frac{3}{4}x+3=\frac{12}{5}$
$解得x=\frac{4}{5}$
$∴点P 的坐标为(\frac{36}{5} \frac{12}{5})或(\frac{4}{5} \frac{12}{5} )$
$综上所述,符合条件的点P 的坐标为$
$(-\frac{12}{5}, \frac{24}{5})、(\frac{12}{5}, \frac{6}{5})、(\frac{36}{5},- \frac{12}{5})、(\frac{4}{5}, \frac{12}{5})$