电子课本网 第26页

第26页

信息发布者:
AP⊥BC
CF=BE+EF
$解:(3)CP= AM$
$证明:∵BE⊥AP,CF⊥AP,∴∠BEA=∠AFC$
$∴∠BAE+∠CAP=90°,∠ACF+∠CAP=90°$
$∴∠BAE=∠ACF$
$∵AB=AC,∴△BAE≌△ACF,∴AE=CF$
$又易知∠BAD=∠ACD=45°,∴∠EAM=∠FCP$
$在△CFP 和△AEM中$
$\begin{cases}{∠FCP=∠EAM }\\{CF=AE} \\ {∠CFP=∠AEM} \end{cases}$
$∴△CFP≌△AEM,∴CP=AM$
$(4)S_{△ABC}=\frac{1}{2}×BC×AD=4$
$由图形可知,S_{△ABC}= S_{△APB} + S_{△APC}=\frac{1}{2}×AP×BE+\frac{1}{2}×AP×CF=\frac 12×AP×(d_{1}+d_{2})$
$当AP⊥BC时,AP 最小,此时AP=2,∴d_{1}+d_{2}的最大值为\frac{2×4}{2}=4$
$解:(1)​BD=CE,​​EC⊥BD,​理由:$
$延长​BD​交​CE​于点​F​$
$在​△EAC​和​△DAB​中$
$​\begin{cases}{AE=AD}\\{∠EAC=∠DAB}\\{AC=AB}\end{cases}​$
$∴​△EAC≌△DAB(\mathrm {SAS})​$
$∴​BD=CE,​​∠ABD=∠ACE​$
$∵​∠AEC+∠ACE=90°​$
$∴​∠ABD+∠AEC=90°​$
$∴​∠BFE=90°,​即​EC⊥BD​$
$​(2)(更多请点击查看作业精灵详解)$