$解:(1+n)x+2023y=2m+2的“交换系数方程”为$
$(2m+2)x+ 2023y=1+n$
$或(1+n)x+(2m+2)y=2023$
$∵(10m-t)x+2023y=m+t是关于x、y的二元一次方程$
$(1+n)x+2023y=2m+2的“交换系数方程”$
$∴当(10m-t)x+2023y=m+t各系数与$
$(2m+2)x+2023y=1+n各系数对应相等时$
$得\begin{cases}{10m-t=2m+2}\\{m+t=1+n}\end{cases},①$
$当(10m-t)x+2023y=m+t各系数与$
$(1+n)x+(2m+2)y=2023各系数对应相等时$
$得\begin{cases}{10m-t=1+n}\\{2023=2m+2}\\{m+t=2023}\end{cases},②$
$解方程组①得\begin{cases}{m=\frac{t+2}{8}}\\{n=\frac{9t-6}{8}}\end{cases}$
$∵t<n<8m$
$∴t<\frac{9t-6}{8}<t+2,解得6<t<22(t为整数)$
$∴8<t+2<24$
$∴若m=\frac{t+2}{8}为整数,必须有t+2=16$
$此时m=2$
$∴t=14$
$当t=14时$
$n=\frac{9t-6}{8}=\frac{9×14-6}{8}=\frac{126-6}{8}=\frac{120}{8}=15$
$符合题意$
$∴m=2$
$解方程组②得$
$m=\frac{2023-2}{2}=\frac{2021}{2}(不是整数)$
$∴方程组②的解不符合题意,需舍去.$
$综上,m=2.$