$(3)解:∵OE⊥MN于点D,∠ANM=30°,$
$∴∠DOB=60°,$
$∵半圆的中点为Q$
$∴\widehat{AQ}=\widehat{QB}$
$∴∠QOB=90°$
$∴∠QOE=30°$
$∴EF=tan∠QOE×OE=\frac {25\sqrt{3}}{3}(cm)$
$\widehat{EQ}的长为\frac {30×π×25}{180}=\frac {25π}{6}(cm)$
$∵\frac {25\sqrt{3}}{3}-\frac {25π}{6}=\frac {50\sqrt{3}-25π}{6}=\frac {25(2\sqrt{3}-π)}{6}>0$
$∴EF>\widehat{EQ}$