$解:原式=3a^2b-2(2ab^2- 4ab+6a^2b+ab)+4ab^2-a^2b$
$=3a^2b-4ab^2+8ab-12a^2b-2ab+4ab^2- a^2b$
$=(3-12-1)a^2b+(-4+4)ab^2+(8-2)ab$
$=-10a^2b+6ab.$
$因为关于x 的多项式2x^3+(a+1)x^2+(b-12)x+3不含x项和x^2项,所以a+1= 0,b-\frac12=0$
$解得a=-1,b=\frac{1}{2},$
$当a=-1,b=\frac{1}{2}时,原式=-10a^2b+6ab=-10×(-1)^2×\frac{1}{2}+6×(-1)×\frac{1}{2}=-5-3=-8$