$解:(1)连接OE,过点O作OM⊥AE于点M$
$则 AM=\frac{1}{2}AE,∠OMA=90°$
$∵DF⊥AC,∴∠DFC=90°,∴∠C=90°-∠CDF = 75°$
$∵AB =AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC-∠C=30°$
$∵⊙O的半径为3,∴OA=3,∴OM=\frac{1}{2}\ \mathrm {OA}=\frac{3}{2}$
$∴AM=\sqrt{OA²-OM²}= \frac{3\sqrt{3}}{2},∴AE=2AM=3 \sqrt{3}$
$∵OA=OE,∴∠AEO=∠BAC=30°,∴∠AOE=180°-∠AEO-∠BAC=120°$
$∴S_{扇形OAE}=\frac{120π×3^2}{360}=3π$
$∵S_{△OAE}=\frac{1}{2}AE\ \cdot\ OM=\frac{9\sqrt{3}}{4}$
$∴S_{阴影}=S_{扇形OAE}-S_{△OAE}=3π-\frac{9\sqrt{3}}{4}$
$证明:(2)连接 BE$
$∵AB 为⊙O的直径,∴∠AEB=90°,∴BE⊥AC$
$∵DF⊥AC,∴BE//DF,∴∠CBE=∠CDF$
$∵∠CBE=∠CAD,∴∠CDF=∠CAD$
$∵四边形ABDE 内接于⊙O,∴∠AED+ ∠ABC=180°$
$∵∠AED+∠DEC=180°,∴∠DEC=∠ABC$
$∵∠ABC=∠C,∴∠DEC=∠C,∴DE =DC,∴∠CDF=∠EDF,∴∠CAD=∠EDF$