$证明:∵BE⊥AC,CF⊥AB,$ $∴∠B+∠BAC=90°,∠C+∠BAC=90°,$ $∴∠B=∠C.$ $ 又BM=CA,AB=NC,$ $ ∴△ABM≌△NCA(\mathrm {SAS}),$ $∴∠BAM=∠N.$ $ ∵∠N+∠NAF=90°,$ $ ∴∠BAM+∠NAF=90°,$ $即∠MAN=90°,$ $ ∴AM⊥AN.$
$证明:(1)∵BD、CE是△ABC的两条高,\ $ $∴∠AEC=∠ADB=90°.\ $ $在△ABD和△ACE中,\ $ $\begin{cases}{∠A=∠A,\ }\\{∠ADB=∠AEC,\ }\\{AB=AC,\ }\end{cases}$ $∴△ABD≌△ACE(\mathrm {AAS}). $ $(2)∵△ABD≌△ACE,$ $∴AD=AE.\ $ $∵AB=AC,$ $∴AB-AE=AC-AD,$ $∴BE=CD$
$解:AB=AD+BE.证明如下:\ $ $∵∠DCE=∠A,\ $ $∴∠D+∠ACD=∠ACD+∠BCE,\ $ $∴∠D=∠BCE.\ $ $在△ACD和△BEC中,$ $\begin{cases}{∠A=∠B,\ }\\{∠D=∠BCE,\ }\\{CD=EC,\ }\end{cases}$ $∴△ACD≌△BEC(\mathrm {AAS}),\ $ $∴AD=BC,AC=BE,\ $ $∴BC+AC=AD+BE,$ $∴AB=AD+BE. $
|
|