电子课本网 第12页

第12页

信息发布者:
​$\frac {1}{50}$​
解:原式​$=-\frac {99}{100}×(-\frac {98}{99})×(-\frac {97}{98})×···×(-\frac {1}{2})$​
​$=-\frac {1}{100}$​
​$\frac {1}{n}-\frac {1}{n十1}$​
​$\frac {2022}{2023}$​
​$\frac {n}{n+1} $​
解:原式​$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4}+\frac {1}{4}-\frac {1}{6}+\frac {1}{6}-\frac {1}{8}+···+\frac {1}{2022}- \frac {1}{2024}) $​
​$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{2024}) $​
​$=\frac {1}{2}×\frac {1012-1}{2024} $​
​$=\frac {1011}{4048}$​