首 页
电子课本网
›
第138页
第138页
信息发布者:
12
$\frac{20}{3}$
$解:(1)AC+MD=AB-MC-BD=20-2×1-2×2=14(\ \mathrm {cm}) $
$(2)设BM=x\ \mathrm {cm},运动时间为t s.$
$因为MD=2AC,$
$所以由题意,得x-2t=2(n-t),$
$所以x=2n.$
$所以AB=AM+BM=3n\ \mathrm {cm}$
(更多请点击查看作业精灵详解)
$解:(3)存在 由题意,知AP=2x\ \mathrm {cm},BQ= x\ \mathrm {cm}.$
$①当C是线段PQ的中点时,得12-2x=8-x,$
$解得x=4;$
$②当P为线段CQ的中点时,得2c-12=\frac{1}{2}(8-x),$
$解得x=\frac{32}{5};$
$③当Q为线段PC的中点时,得2x+x-20=8-x,$
$解得x=7.$
$综上所述,x的值为4或\frac{32}{5}或7 $
$解:(3)如图①,当点N在线段BM上时,$
$设MN=y\ \mathrm {cm}.$
$因为MN+BN=AN,$
$所以由题意,得y+2n-y=n+y,$
$解得y=n.$
$所以MN=n\ \mathrm {cm}.$
$因为AB=3n\ \mathrm {cm},$
$所以\frac{AB}{MN}=3.$
$如图②,当点N在线段AB的延长线上时,$
$设MN=z\ \mathrm {cm}.$
$因为MN+BN=AN,$
$所以z+z-2n=n+z,$
$解得z=3n.$
$所以MN=AB=3n\ \mathrm {cm}.$
$所以\frac{AB}{MN}=1.$
$综上所述,\frac{AB}{MN}的值为3或1 .$
上一页
下一页