$ 证明:(1)∵AB=AC$
$∴∠ABC=∠ACB$
$∵BH、CM为△ABC内的高$
$∴∠BMC=∠CHB=90°$
$∴∠ABC+∠PCB=∠ACB+∠PBC=90°$
$∴∠PCB=∠PBC∴PB=PC$
$(2)∵PB=5,PH=3$
$∴BH=PB+PH=8$
$∵PB=PC∴PC=5$
$在Rt△PHC中, CH=\sqrt{PC^2-PH^2}=4$
$∵AB=AC∴AB=AH+HC=AH+4$
$在Rt△ABH中, AB^2=BH^2+AH^2$
$∴ (AH+4)^2=8^2+AH^2$
$∴AH=6$
$∴AB=AH+4=10$