$解:(1) y=x+1$
$(2) (4,5)或(-5,-4)或(3,4)或(-4,-3)$
$(3)设点Q的坐标为(a,2a-1),$
$点P的坐标为(b,b+1),$
$∵PQ= \sqrt{2},$
$∴PQ²=2,即(a-b)²+(2a-b-2)²=2 ①,$
$又∵以点Q为圆心, \sqrt{2}为半径的圆与直线{l}_1相切,$
$∴点Q到直线{l}_1:y=x+1的距离为 \sqrt{2},即 \frac {|a-(2a-1)+1|}{\sqrt{{1}^2+(-1)^2}}= \sqrt{2},$
$整理得:|2-a|=2,$
$解得:a=0或a=4,$
$将a=0代入①,得:b²+2b+1=0,$
$解得:b=-1,$
$∴点P的坐标为(-1,0);$
$将a=4代入①,得:b²-10b+25=0,$
$解得:b=5,$
$∴点P的坐标为(5,6),$
$综上,点P的坐标为(-1,0)或(5,6).$