解:(1)证明: $ \because \angle A B C=90^{\circ}$
$\therefore \angle C B D=180^{\circ}-\angle A B C=90^{\circ}$
$\therefore \angle A B E=\angle C B D$
在 $\triangle A B E$ 和 $\triangle C B D$ 中,
$\because\left\{\begin{array}{l}A B=C B \\ \angle A B E=\angle C B D \\ B E=B D\end{array}\right.$
$\therefore \triangle A B E \cong \triangle C B D(S A S) ;$
$(2) \because \angle A B C=90^{\circ}, A B=C B$
$\therefore \angle A C B=\angle B A C=45^{\circ}$
$\because \angle C A E=30^{\circ}$
$\therefore \angle B E A=\angle C A E+\angle A C B=30^{\circ}+45^{\circ}=75^{\circ}$
由(1)知 $\triangle A B E \cong \triangle C B D$
$\therefore \angle B D C=\angle B E A=75^{\circ} .$