电子课本网 第11页

第11页

信息发布者:
解:(1)证明: $ \because \angle A B C=90^{\circ}$
$\therefore \angle C B D=180^{\circ}-\angle A B C=90^{\circ}$
$\therefore \angle A B E=\angle C B D$
在 $\triangle A B E$ 和 $\triangle C B D$ 中,
$\because\left\{\begin{array}{l}A B=C B \\ \angle A B E=\angle C B D \\ B E=B D\end{array}\right.$
$\therefore \triangle A B E \cong \triangle C B D(S A S) ;$
$(2) \because \angle A B C=90^{\circ}, A B=C B$
$\therefore \angle A C B=\angle B A C=45^{\circ}$
$\because \angle C A E=30^{\circ}$
$\therefore \angle B E A=\angle C A E+\angle A C B=30^{\circ}+45^{\circ}=75^{\circ}$
由(1)知 $\triangle A B E \cong \triangle C B D$
$\therefore \angle B D C=\angle B E A=75^{\circ} .$

解:(1) 证明 $\because C F \perp A B, B E \perp A C$
$\therefore \angle B F D=\angle C E D=90^{\circ}$
$\therefore \angle B D F+\angle A B D=\angle C D E+\angle P C A=90^{\circ}$
$\because \angle B D F=\angle C D E$
$\therefore \angle A B D=\angle P C A$
在 $\triangle A B D$ 和 $\triangle P C A$ 中
$\left\{\begin{array}{l}A B=C P \\ \angle A B D=\angle P C A \\ B D=A C\end{array}\right.$
$\therefore \triangle A B D \cong \triangle P C A(\mathrm{SAS})$
$\therefore A P=A D$
(2) $A P \perp A D$, 理由如下:
$\because \triangle A B D \cong \triangle P C A$
$\therefore \angle B A D=\angle P$
$\because \angle A F P=90^{\circ}$
$\therefore \angle P+\angle P A F=90^{\circ}$
$\therefore \angle B A D+\angle P A F=90^{\circ}$, 即
$\angle P A D=90^{\circ}$
$\therefore A P \perp A D$