电子课本网 第49页

第49页

信息发布者:
C



8
5
(更多请点击查看作业精灵详解)
$证明:∵\frac {AD}{AB}=\frac {A'D'}{A'B'}$
$∴\frac {AD}{A'D'}=\frac {AB}{A'B'}$
$∵\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AD}{A'D'}$
$∴△ADC∽△A'D'C'$
$∴∠A=∠A'$
$∵\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴△ABC∽△A'B'C'$
$解:(1)不相似,理由:$
$∵ CD⊥x 轴,$
$∴ ∠ADC=90°.$
$∵∠AOB=90°,$
$∴∠AOB=∠ADC.$
$∵ A(3,0)、B(0,4)、C(4,2),$
$∴OA=3,OB=4,OD=4,DC=2.$
$∴ DA=OD-CA=1.$
$∴\frac{OB}{DC}=\frac{4}{2}=2,\frac{OA}{DA}=\frac{3}{1}=3.$
$∴\frac{OB}{DC}≠\frac{OA}{DA}$
$∴△AOB与△ADC不相似.$
$解:(2)相似,理由:$
$在Rt△AOB中,AB= \sqrt{3²+4²}=5,$
$在Rt△ADC中,AC= \sqrt{1²+2²}=\sqrt{5}.$
$过点C作CH⊥OB于点H,$
$则易得四边形ODCH为矩形$
$∴CH=OD=4,OH=CD=2.$
$∴ BH=4-2=2.$
$在Rt△BHC中,BC=\sqrt{2²+4²}=2\sqrt{5}$
$∴\frac{AB}{AC}= \frac{5}{\sqrt{5}}=\sqrt{5},$
$\frac{BC}{CD}=\frac{2\sqrt{5}}{2}=\sqrt{5},$
$\frac{AC}{AD}=\frac{\sqrt{5}}{1}= \sqrt{5}.$
$∴\frac{AB}{AC}=\frac{BC}{CD}=\frac{AC}{AD}$
$∴△ACB∽△ADC.$