$解:(2)相似,理由:$
$在Rt△AOB中,AB= \sqrt{3²+4²}=5,$
$在Rt△ADC中,AC= \sqrt{1²+2²}=\sqrt{5}.$
$过点C作CH⊥OB于点H,$
$则易得四边形ODCH为矩形$
$∴CH=OD=4,OH=CD=2.$
$∴ BH=4-2=2.$
$在Rt△BHC中,BC=\sqrt{2²+4²}=2\sqrt{5}$
$∴\frac{AB}{AC}= \frac{5}{\sqrt{5}}=\sqrt{5},$
$\frac{BC}{CD}=\frac{2\sqrt{5}}{2}=\sqrt{5},$
$\frac{AC}{AD}=\frac{\sqrt{5}}{1}= \sqrt{5}.$
$∴\frac{AB}{AC}=\frac{BC}{CD}=\frac{AC}{AD}$
$∴△ACB∽△ADC.$